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S1: Why Numerical Simulation?

Builds intuition of intense beam physics
+ “The purpose of computation is insight, not numbers.”
Richard Hamming, chief mathematician of the Manhattan Project and
Turing Award recipient
+ Advantages over laboratory experiments:
- Full nonintrusive beam diagnostics are possible
- Effects can be turned on and off

Allows analysis of more realistic situations than analytically tractable
+ Realistic geometries
+ Non-ideal distributions
+ Combined effects
+ Large amplitude (nonlinear) effects

Insight obtained can motivate analytical theories

+ Suggest and test approximations and reduced models to most simply express
relevant effects
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Why Numerical Simulation? (2)

Can quantify expected performance of specific machines
+ Machines and facilities expensive — important to have high confidence that
systems will work as intended/promised to funding agencies

Computers and numerical methods/libraries are becoming more powerful
Enables both analysis of more realistic problem modeling and/or better numerical
convergence
+ Bigger and faster hardware
- Processor speed increasing
- Parallel machine architectures
- Greater memory
+ More developed software
- Improved numerical methods
- Libraries of debugged code modules
- Graphics and visualization tools
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Why Numerical Simulation? (3)

Simulations are increasingly powerful and valuable in the analysis of intense
beams, but should not be used to exclusion
+ Parametric scaling is very important in machine design
- Often it is hardest to understand what specific choices should be made in physical
aperture sizes, etc.
- Although scaling can be explored with simulation, analytical theory often best
illustrates the trade-offs, sensitivities, and relevant combinations of parameters
+ Concepts often fail due to limits of technology (e.g., fabrication tolerances,
material failures, and unanticipated properties) and hence full laboratory
testing is vital
- Many understood classes of errors can be probed with simulation
- Unanticipated error sources are most dangerous!
- Must understand contemporary technology limits to work effectively
+ Economic realities often severely limit what can be constructed
- Simulating something financially unattainable may serve little purpose
- Need compelling evidence of improvements for major experiment funding
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Why Numerical Simulation? (4)

The highest understanding and confidence is achieved when results from analytic
theory, numerical simulation, and experiment all converge
+ Motivates model simplifications and identification of relevant sensitivities

Numerical simulation skills are highly sought in many areas of accelerator and
beam physics

+ Specialists readily employable

+ Skills transfer easily to many fields of physics and engineering
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S1A: Which Numerical Tools?

There are many simulation codes with a wide variety of scope and capabilities
which evolve in time. This course will not review particular codes, but rather is
intended as a top-down review of contemporary methods commonly employed in
numerical simulation of intense beams.
+ The topic of codes and preferences can at times (especially with developers!)
border on discussions of religious preferences.
Numerous programming languages are employed in numerical simulations of
intense beams
+ Most common today: Fortran (90, 2000, ... ), C, C++, Java, ...
+ Strengths and weaknesses depend on application, preferences, and history
(legacy code)
Results are analyzed with a variety of graphics packages:
The well-known saying: “A picture is worth a thousand words” nicely
summarizes the importance of good graphics in illustrating concepts.
+ Commonly used: NCAR, Gist, Gnuplot, IDL, Narcisse, Mathematica,
Mathcad, MATLAB, ...
+ Plot frames combine into movies
+ Use can greatly simplify construction of beam visualization diagnostics
- Many person-years of labor go into writing extensive graphics packages
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Which Numerical Tools? (2)

A modern and flexible way to construct simulation packages is to link routines in
fast, compiled code with an interactive interpreter such as:

+ Examples: Python, Basis, Yorick, ...

+ Python used in OS development and will not disappear anytime soon

Advantages of using interactive interpreters:

+ Allows routines to be coded in mixed languages
- Renders choice of programming languages less important

+ Flexible reconfiguration of code modules possible to adapt for specific,
unanticipated needs
- Reduces need for recompilation and cumbersome structures for special uses
- Aids cross-checking problems and debugging when switching numerical methods

and parameters, etc.

+ “Steering” of code during runs to address unanticipated side effects
- Change diagnostics/methods in middle of long run based on results obtained

+ In the case of Python, facilitates modern, object-oriented structure for the
problem description

+ Allows use of wide variety of packages based on a users preference
- Graphics/diagnostics, numerical methods (e.g., Scientific Python), ....
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Which Numerical Tools? (3)

Discussing particular programming languages and graphics packages is beyond
the scope of this class. Here our goal is to survey numerical simulation methods
employed without presenting details of specific implementations.

However, we will show examples based on the “Warp” particle-in-cell code
developed for intense beam simulation at LLNL and LBNL: http://warp.lbl.gov
+ Warp is so-named since it works on a “warped” Cartesian mesh with bends
+ Alex Friedman (LLNL) original architect/developer, Dave Grote primary
developer for many years
+ Warp is a family of particle-in-cell code tools built around a common Python
interpreter for flexible operation
+ Optimized for the simulation of intense beams with self-consistent space-
charge forces
+ Actively maintained and extended:
- Movers - Diagnostics
- Electrostaic Field Solvers - Multi-species
Electromagnetic Field Solvers - E-Cloud effects

- Mesh Refinement
- Dense Plasmas
- Multipole Fields

More on Warp later after discussion of methods, etc.
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S2: Classes of Intense Beam Simulations
S2A: Overview

There are three distinct classes of modeling of intense ion beams applicable to
numerical simulation

0) Particle methods (see: S2B)
1) Distribution methods (see: S2C)
2) Moment methods (see: S2D)

All of these draw heavily on methods developed for the simulation of neutral
plasmas. The main differences are:
+ Lack of overall charge neutrality
- Single species typical,
though electron + ion simulations (Ecloud) and beam in plasma simulations
are common too
+ Directed motion of the beam along accelerator axis
+ Applied field descriptions of the lattice
- Optical focusing elements
- Accelerating structures

We will review and contrast these methods before discussing specific numerical
implementations
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S2B: Particle Methods: Equations of Motion

Classical point particles are advanced with self-consistent interactions given by
the Maxwell Equations
+ Most general: If actual number of particles are used, this is approximately the
physical beam under a classical (non-quantum) theory
+ Often intractable using real number of beam particles due to numerical work
and problem size
+ Method also commonly called Molecular Dynamics simulations

Equations of motion (time domain, 3D, for generality)
ith particle moving in electric and magnetic fields

dp; dx; . .
L=F; =q | E(x;,t L x B(x;,t Initial conditions
dt 4 ( (i, 0) + g * Blx )>
dx; p? 12 xi(t=0)
Vi—— =P 5 vi= |1+ — = (=0

Particle phase-space orbits X;(t), Pi(t) are solved as a function of time in the

self-consistent electric and magnetics fields E(x,t), B(x,t)
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S2B: Particle Methods: Fields

Fields (electromagnetic in most general form) E, B evolve consistently with the
coupling to the particles according to the Maxwell Equations

Charge Density
vVE=L P(X,t) = pexe(X,1) + D qib[x — xi(t)]

€0 A : \
particle

\ T
0B \
/ beam

VXE= ot \ external

/ lied
Current Density’/ (applied)

y dXZ’/
V-B=0 J(x,t):Jext(x,t)+Z%’E5[X—Xi(t)]

OE
B = —
V x /J,()J + Ho€o ot

+ boundary conditions on E, B
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S2C: Distribution Methods: Equations of Motion

Distribution Methods
+ Based on reduced (statistical) continuum models of the beam
+ Two classes: (microscopic) kinetic models and (macroscopic) fluid models
+ Here, distribution means a function of continuum variables
+ Use a 3D collision-less Vlasov model to illustrate concept
- Obtained from statistical averages of particle formulation

Example Kinetic Model: Vlasov Equation of Motion
q; = q; mj; = m;easy to generalize for multiple species (see later slide)

0 0 o
(v e ra®+vxB) g fxp. =0
p p/m Initial condition

VT Am T L+ p2/(mo)2) 2 f(x,p,t=0)

f(x,p,t) evolved from t=0
X, p, t

independent variables
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S2C: Distribution Methods: Fields

Fields: Same as in particle methods but with p, J expressed in proper form for
coupling to the distribution f

Charge Density
V-E= eﬁ p(X7 t) = pext(X7 t) +q / dgpf(X, p, t)
0 ,
oB
VxE=-—- \ external \
/ . , beam
) / (applied) /
Current Density / /
y s
V-B=0 J(x,t) = Jext(x,1) +q | d&°p vf(x,p, 1)
OE
VxB= /JloJ-f‘/JzoG()E
+ boundary conditions on E, B
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S2C: Distribution Methods: Vlasov Equation

The Vlasov Equation is essentially a continuity equation for an incompressible
“fluid” in 6D phase-space. To see this, note that

0
% -vxB=0
The Vlasov Equation can be expressed as
of & 9 B
of 0 [dx o (dp B
7 ot " ox (dt or{)'it> i 8p <dt or{;it> =0

which is manifestly the form of a continuity equation in 6D phase-space, i.e.,
probability is not created or destroyed
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S2C: Distribution Methods: Collision Corrections

The effect of collisions can be included by adding a collision operator:

0 o, 0 _of
{g—l—v-&—l—(q[E%—va]y%}f_a

coll

of
ot

+ See: estimates in J.J. Barnard, Intro Lectures

For most applications in beam physics, can be neglected.

coll
For exceptional cases, specific forms of collisions terms can be found in

Nicholson, Intro to Plasma Theory, Wiley 1983, and similar plasma physics texts
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S2C: Distribution Methods: Comment on the PIC Method

The common Particle-in-Cell (PIC) method is not a particle method, but rather is a
distribution method that uses a collection of smoothed “macro” particles to
simulate Vlasov's Equation. This can understood roughly by noting that Vlasov's
Equation can be interpreted as

/%f(xapat) =0

Total derivative along a test particle's path

— Advance particles in a continuous field “fluid” to eliminate particle collisions

Important Point:

PIC is a method to solve Vlasov's Equation, not a discrete particle method

This will become clear after these lectures
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S2C: Distribution Methods: Multispecies Generalizations

Subscript species with j. Then in the Vlasov equation replace:
f—
m — m;
q—4;j

and there is a separate Vlasov equation for each of the j species.

Replace the charge and current density couplings in the Maxwell Equations with

and appropriate form to include charge and current contributions from all species:

P(X;t) = pext(xit) + Zq] /dgpf](xapat)

J
J(X,t) ZJeXt(X,t) +ZQj/d3prj(X7p:t)
J

Also, if collisions are included the collision operator should be generalized to
include collisions between species as well as collisions of a species with itself
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S2C: Fluid Models

Fluid Models
+ Obtained by taking statistical averages of kinetic model over
velocity/momentum degrees of freedom
+ Described in terms of “macroscopic” variables (density, flow velocity,
pressure...) that vary in x and ¢
+ Models must be closed (truncated) at some order via physically motivated
assumptions (cold, negligible heat flow, ...)

Moments:
Density n:

n(x, t) == /dgp f(X,p,t)

Flow velocity V- nV(x,t) = /d3p vf(x,p,t)

Flow momentum P .

’I’LP(X, t) - /dgp pf(X,p,t)

Pressure tensor 'pl.j .

0Py (x,1) = / &p [pi — Pi(x, )]

x [v; = Vi(x,1)]f(x,p,1)
Higher rank objects
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S2C: Fluid Models: Equations of Motion

Equations of Motion (Eulerian perspective)

Continuity:
on 0
ot ox VIS0

Force: ith component

0 0 0
n(_+V._>Pi+;aTj73ij:qn[E—Q—VXB]i

ot ox
Pressure: tensor component
Op
ot "
Fields:

Maxwell Equations are the same with charge and current density coupling to fluid
variables given by:

p(X,t) = pext(X,t) + qn(x,t)
J(x,t) = Jext(x, 1) + qn(x,1)V(x,1)
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S2C: Fluid Model: Multispecies Generalization

Subscript species with j. Then in the continuity, force, pressure, ... equations
replace

Particle Properties Moments
m— m; n—mn;
qg—4j

VvV — Vj
Replace the charge and current density couplings in the Maxwell Equations with

p(X,t) = Pext(X,t) + Z q;in; (x,t)

J(x,t) = Jexe(x, ) + Z g (x,t)V;(x,1)

SM Lund, USPAS, June 2011 Simulation Techniques 26

S2C: Lagrangian Formulation of Distribution Methods

In kinetic and especially fluid models it can be convenient to adopt Lagrangian
methods. For fluid models these can be distinguished as follows:

Eulerian Fluid Model:
Flow quantities are functions of space (x) and and evolve in time (t)
+ Example: density n(x, t) and flow velocity V(x, t)

Lagrangian Fluid Model:
Identify parts of evolution (flow) with objects (material elements) and follow the
flow in time (t)

+ Shape and position of elements must generally evolve to represent flow

+ Example: envelope model edge radii r;(s), 74(s)

Many distribution methods for Vlasov's Equation are hybrid Lagrangian methods
+ Macro particle “shapes” in PIC (Particle in Cell) method to be covered can be
thought of as Lagrangian elements representing a Vlasov flow
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S2C: Example Lagrangian Fluid Model

1D Lagrangian model of the longitudinal evolution of a cold beam
+ Discretize fluid into longitudinal elements with boundaries
+ Derive equations of motion for elements

Coordinates: Z() AR 23 Z e A
Charges: ‘Qm Qsj2 | Qs/2 | Q12 ‘ ‘ ‘ ‘
> 2
Masses: My | M3y | s | Mg/ ‘ ‘ ‘ ‘
Velocities: 1V, V; Vo V3 Vi . Vy
2 = 7, slice boundaries Qiy1/2 fixed Qiv1/2 ¢ .
—— = = — = cons
dzZ; _ . velocities of slice ~ Mit1/2  fixed Miy12 M
dt ~ ' boundaries for single species

(set initial coordinates)
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Example Lagrangian Fluid Model, Continued (2)

Solve the equations of motion

dZ;(t)
0 v
dvi(t) ¢

for all the slice boundaries. Several methods might be used to calculate E :

1) Take “slices” to have some radial extent modeled by a perpendicular envelope

etc. and deposit the Q_  onto a grid and solve:

0
vo=-L g = _9¢
€0 0z

subjectto E, — 0 as |z] = oo

2) Employ a “g-factor” model

g O\ A calculated from Q112
E, = and radial extent of the

elements etc.

B 47eg oz

3) Pure 1D model using Gauss' Law
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S2D: Moment Methods

Moment Methods
+ Most reduced description of an intense beam
- Often employed in lattice designs
+ Beam represented by a finite (closed and truncated) set of moments that are
advanced from initial values
- Here by moments, we mean functions of a single variable s or t
+ Such models are not generally self-consistent
- Some special cases such as a stable transverse KV equilibrium distribution
(see: S.M. Lund lectures on Transverse Equilibrium Distributions) are
consistent with truncated moment description (rms envelope equation)
- Typically derived from assumed distributions with self-similar evolution
+ See: S.M. Lund lectures on Transverse Equilibrium Distributions for more
details on moment methods applied to transverse beam physics
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S2D: Moment Methods: 1% Order Moments

Many moment models exist. Illustrate with examples for transverse beam
evolution
Moment definition:

() :fd2.TJ_fd2le_...f
T [ @2xg [ &2 f

Averages over the transverse degrees of freedom in the distribution

1* order moments:

X = <X> N Centroid coordinate
X/ — <X/>J_

Centroid angle

A = <5ps> = <5>J_ Off momentum
Ps /|
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S2D: Moment Methods: 2™ and Higher Order Moments

2" order moments:

X moments y moments X-y cross moments  dispersive moments

<x2>J_ <y2>J_ (zy) | (x6), , (yo)
(a), (yy), @'y, (@y), (@6, '),
<w12>J_ <y/2>J_ (:L"y')l <62>J_

It is typically convenient to subtract centroid from higher-order moments

x—X =2 -X
y_Y gIE I_YI

<i2>L = ((x—X)2>L = (z‘2>L — X2, etc.

3" order moments: Analogous to 2™ order case, but more for each order

<$3>¢7 <$2y>L’
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S2D: Moment Methods: Common 2™ Order Moments

Many quantities of physical interest are expressed in terms of moments

Statistical beam size: (rms edge measure)

re = 2(3)\/?
ry = 2(5%) )

Measures effective transverse beam size

Statistical emittances: (rms edge measure)

e, =4 (%) (&%), - (@3]
%=4foji%l—@ﬁﬁfﬂ

Measures effective transverse phase-space volume of beam

]1/2
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S2D: Moment Methods: Equations of Motion

Equations of Motion
+ Express in terms of a function of moments
+ Moments are advanced from specified initial conditions

Form equations:

d
—M =FM
7 (M)

M = vector of moments, generally infinite
F = vector function of M, generally nonlinear

Moment methods generally form an infinite chain of equations that do not
truncate. To be useful the system must be truncated. Truncations are usually
carried out by assuming a specific form of the distribution that can be described
by a finite set of moments

+ Self-similar evolution: form of distribution assumed not to change

- Analytical solutions often employed

+ Neglect of terms

A simple example will be employed to illustrate these points
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S2D: Moment Methods: Example: Transverse Envelope Eqns.
Truncation assumption: unbunched uniform density elliptical beam in free space
+ § =0, no axial velocity spread
+ All cross moments zero, i.e. (Zy), =0

_o\1/2
= re = 2(7?
Centroid: X <$>J— Envelope: v < > 1L2
Y = <y>J_ T’y -9 <g2>J_/
’ ~2 ~2
For: — + L <1
2 T’Z
A -
B &
ey (re +7y)72
; A y
§ Ej; = AN
— - meg (1z +1y)Ty
)\ = line charge density

These results are employed to derive the moment equations of motion

(See S.M. Lund lectures on Transverse Centroid and Envelope Models)
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Example Continued (2) - Equations of Motion in Matrix Form

(z)1 (x) 1
d | @) | _ | —ke(s) ()L
ds | ()L (W)L
L W | —ry(s){y) L
[ @)1 ] [ 2@, T
i’ 22y =2 Q"))
< >l (af >L Hz(S)(% >L + 2[(%:)1/;—}—?@2)1/2]
N . Q(z&’
i <x/2>l _ _2“51'(3)<$Z/>J_ + <i2>i/2[(i2)1l/2:_<g2>1/2]
ds | (7°)L 2(gy’) L )
~2\1/2
(99)1 @)1 = T2+ gt
_ . QY
@ | [ TR G

+ Form truncates due to assumed distribution form
+ Self-consistent with the KV distribution. See: S.M. Lund lectures on
Transverse Equilibrium Distributions
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Example Continued (3) - Reduced Form Equations of Motion

Using 2™ order moment equations we can show that
dpe2_g_ 4.
ds ® ds Y

€2 =16 [<m2>J_ (") — (wm')i] = const

e =16 [<y2>L (y*), - (yy')i] = const

The 2" order moment equations can be equivalently expressed as

d d 2 2
ﬁ:r’m; —ré—}—/{xm—i@—g—’“:O
ds ds Tx+ry r%
dry / d , 2Q 512/
B =T gy e =0
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Example Continued (4) : Contrast Form of Matrix and Reduced
Form Moment Equations

Relative advantages of the use of coupled matrix form versus reduced equations
can depend on the problem/situation

Coupled Matrix Equations Reduced Equations

= F(v) AR X =0
s
2 2
M = Moment Vector 7{;/ + KpTy — - Q o 5_;: =0

F = Force Vector Te + Ty Tz

etc.

+ Easy to formulate
- Straightforward to incorporate
additional effects
+ Natural fit to numerical routine
- Easy to code

Reduction based on identifying
invariants such as

2 ~2 ~12 ~~\2
e7 =16 |(z°) (& }Lf(:m’)J_]
helps understand solutions

+ Compact expressions
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S2E: Hybrid Methods

Beyond the three levels of modeling outlined earlier:

0) Particle methods

1) Distribution methods

2) Moment methods
there exist numerous “hybrid” methods that combine features of several methods.
Hybrid methods may be the most common in detailed simulations.

Examples Common Hybrid Methods:
+ Particle-in-Cell (PIC) models
- Shaped (Lagrangian) macro-particles represent the distribution
- Macro-particles evolved using particle equations of motion
- Interactions via self-field are smoothed to represent continuum mechanics
+ Gyro-kinetic models
- Average over fast gyro motion in strong magnetic fields: common in plasma
physics
+ Delta-f models
- Evolve perturbed distribution with marker particles evolving about a core
“equilibrium” distribution
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Hybrid Methods Continued (2)

General comments on selecting methods:

+ Particle and distribution methods are appropriate for higher levels of detail

+ Moment methods are used for rapid iteration of machine design
- Moments also typically calculated as diagnostics in particle and distribution

methods

+ Even within one (e.g. particle) there are many levels of description:
- Electromagnetic and electrostatic, with many field solution methods
- 1D, 2D, 3D

+ Employing a hierarchy of models with full diagnostics allows cross-checking
(both in numerics and physics) and aids understanding
- No single method is best in all cases

SM Lund, USPAS, June 2011 Simulation Techniques 40




S3: Overview of Basic Numerical Methods
S3A: Discretizations
General approach is to discretize independent variables in each of the methods and

solve for dependent variables which in some cases may be discretized as well
Time (or s)

to Ay

i R R ISR
0 1 2 t

T t=to+il;; i=0,1,2,3,..
initial

condition

+ Nonuniform meshes also possible
— Add resolution where needed
— Increases complexity
In applications may apply these descriptions in a variety of ways
+ Move a transverse thin slice of a beam...
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Transverse Coordinate Discretization

Spatial Coordinates (transverse)

Y
A Tmaz
n Ymaz
! T = Tmin + ’LAw
Aaz = (mmax - xmzn)/nz
- Ay = (ymaw - ymin)/ny
2 AUI ’L = 0,1,2,...,n$
y | é ‘EI— 12071,2’...,ny
%01 2 i o,
Lynin

+ Analogous for 3D, momentum coordinates (in direct Vlasov simulations), etc.
+ Nonuniform meshes possible to add resolution where needed
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Transverse Coordinate Discretization — Applications

In applications may apply these discretizations in a variety of ways:
Transverse Slice Simulation:
+ Move a transverse thin “slice” of beam along the axial coordinate s of a
reference particle

x

- Thin slice of a long pulse is

advanced and the transverse
grid moves with the slice

+ Limitations:

- This “unbunched” approximation is not always possible
— 3D effect can matter, e.g. in short pulses and/or beams ends
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Transverse Coordinate Discretization — Applications (2)

Steady State Simulation:
+ Simulate the middle of a long pulse where a time stationary beam fills the grid
Example: Mid-Pulse Diode
Pierce
Source Electrode  Aperture

VoL

W

N

+ Mesh is stationary, leading to limitations
- Beam pulse always has ends: see J.J. Barnard lectures on Longitudinal Physics
- Assumes that the mid-pulse in nearly time-independent in structure
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Transverse Coordinate Discretization — Applications (3)
Full 3D Simulation

+ Simulate a 3D beam with a moving mesh that follows a reference particle
(possibly beam centroid).

y‘ Reference
x

Cartesian path can bend

Mesh ~

+ Comments:
— Most realistic level of modeling, but also most numerically intensive
— Grid can be moved in discretized jumps so that applied fields maintain
alignment with the grid
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S3B: Discrete Numerical Operations

Let x represent a spatial coordinate and f(x) some continuous function of x
Lpin, A:L‘ Tmax

o T1 T2 &£ T

“x

\j
K

Ti = Tmin + lAa:a Ay = (xmaa: - xmzn)/nz
t=0,1,2,...n

Denote f; = f(=;), etc. and Taylor expand one grid point forward and
backward about x = x.

B of 1 82f| ., 1 &3f
o =ik g Bat g ] Mt g ] A
(9f 1 0%f| o 1 Of] 3
fi-1=fi— Am‘Fi@iAz—i%iAw‘F

The same methodology can be applied to other spatial (y, z) coordinates and
temporal (t or s) coordinates
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Discrete Numerical Operations: Derivatives

Simple, but inaccurate expressions for 1% order derivatives follow immediately
from the forward and backward expansions

. 8f f’L+1 fz
2 point: Forward: % Z Az (Aw)
(non-centered) of fi—fi
Backward: | =L | — Ji T Jitl A
ackwar o i A, + O(A,)

A more accurate, centered discretization for a 1* order derivative is obtained by
subtracting the two expansions.

3 point: a_f
(centered) Ox

fz-H fz

2

+ More accuracy generally will require the use of more function points
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Discrete Numerical Operations: Derivatives (2)

The expansions can be relabeled (i -> i+1, etc.) and the resulting set of equations
can be manipulated to obtain 5-point and other higher-order forms with higher
accuracy:

5 point: a_f _ Jim2a = 8fi—1 +8fit1 — firo
(centered) | 9z |. 12A,

)

+O(A3)

Still higher order, and more accurate, forms are possible but rapidly become
cumbersome and require more neighboring points.

Similar methods can be employed to obtain discretizations of higher order
derivatives. For example,

3point: | O f|  fix1 —2fi + fiz
(centered) | 92 i_ A%

+0(A2)
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Discrete Numerical Operations: Integrals/Quadrature

Tmaz

di f(Z) can be composed as sub-integrals of the form

[ asw

i—1

Take n_even, then /

Tmin

Using a linear approximation (Trapezoidal Rule):

fla) _d
fizt
Jir1
/ Ax Azx —
T
Ti 1 T Ti+1

/:vi+1 dxf(;l;) _ fi—l + 22fz + fi—i—l Aw + (’)(Ai)

i—1
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Discrete Numerical Operations: Integrals/Quadrature (2)

Better approximations can be found (e.g., Simpson's Rule) using Taylor series
expansions and the previous discrete derivatives:

fiv1 — fie Jiv1 = 2fi + fie
flx)=fi+ HQA:,; 1ZL’+ + A2 L

|z — 2]
+o< N

/:vi-q-l dxf(x) _ fz'_l + 43fz + fH—l Aw + O(Ag)

giving:

i—1

In the examples given, uniform grids have been employed and the formulas
presented for derivatives and integrals are readily generalized to multiple
dimensions.
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Discrete Numerical Operations: Irregular Grids

Nonuniform grids can be used to effectively concentrate resolution where it is
needed

|
T
Low Res. | HighRes. | Low Res.

+ Can be used most effectively when high resolution is needed only in limited
regions and simulation domains are large
+ Nonuniform grids make discretized formulas more complicated, particularly
with respect to ordering errors
- A simple example of nonuniform derivative calculation is included in the
homework to illustrate methods
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Discrete Numerical Operations: Axisymmetric Systems

To be added: Slide to discuss how to solve cylindrically symmetric
problems pointing out origin problems. Suggest that it is often
better to simply do in 2D x-y geometry and use conserved angular
momentum.
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S3C: Numerical Solution of Moment Methods — Time Advance

We now have the tools to numerically solve moment methods. The moment
equations may always be written as an N-dimensional set of coupled 1* order
ODE:s (see: S2C and S.M. Lund lectures on Transverse Envelope Equations):

M= ((z)1,-, (@%)1,--)
dM

— =FM
dS ( ’8)

+ Methods developed to advance moments can also be used for advances in
particle and distribution methods

N-dim vector of moments

vector equation of motion

/Il Example: Axisymmetric envelope equation for a continuously focused beam

d*R 2 Q 52 — 2

k:%o, Q, 53, constants

d[R}_ R
ds | R | | =K% R+ %+ % p
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S3C: Numerical Solution of Moment Methods — Euler Advance

Euler's Method:
Apply the forward difference formula

dM| _ My —M;
ds |. Ay

)

+ O(As) = F(M“ 3,‘)

Rearrange to obtain 1* order Euler advance:

M1 = M; + F(M;, 5)As + O(A2)

+ Moments advanced in discrete steps in s from initial values

Note that N, steps will lead to a total error

error ~ N, - O(A2) ~ SmwAﬂO(Az) ~ O(Ay)

+ Error decreases only linearly with step size
+ Numerical work for each step is only one evaluation of F
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S3C: Numerical Solution of Moment Methods — Order Advance

Definition:
A discrete advance with error O(A?) is called an (n-1)th order method

+ Euler's method is a 1" order method

+ Higher order methods are generally used for ODE's in moment methods
- Numerical work to evaluate F small

+ Low order methods are generally used for particle and distribution methods
- Numerical work to evaluate F large
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S3C: Numerical Solution of Moment Methods —
Runge-Kutta Advance

Runge-Kutta Method:
Integrate from S; to S;47:

M
ds
8it+1
Mi+1 = MZ + / ds F(M, S)
S

=FM,s)

Approximate F with a Taylor expansion through the midpoint of the step, S;.1 /2

OF

F(M,s) = F(M;1/2,Si4+1/2) + En (s—siy12) + O(A2)

Sit1/2

The linear term integrates to zero, leaving

= M1 = M + F(My11/2, 8i41/2) - As + O(AY)
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Runge-Kutta Advance (2)

Note: only need M /5 to (’)(Ai) for O(Ag) Accuracy, so we can
apply Euler's method for the two-step procedure:

2" Order Runge-Kutta Method:
K =F(M;, si)A;

Step 1:

K A,
Step2: M1 =M; +F (MZ + E,Si + 7) A + O(Ai)

+ Requires two evaluations of F per advance
+ 2" order accurate in A,

Higher order Runge-Kutta schemes are derived analogously from various
quadrature formulas. Such formulas are found in standard numerical methods
texts

+ Typically, methods with error O(Aiv *1) will require N evaluations of F
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S3C: Numerical Solutions of Moment Methods

Many methods are employed to advance moments and particle orbits.

A general survey of these methods is beyond the scope of this lecture. But some
general comments can be made:
+ Many higher-order methods with adaptive step sizes exist that refine accuracy
to specified tolerances and are optimized for specific classes of equations
- Packages such as Mathematica and SciPy have many examples
+ Choice of numerical method often relates to numerical work and stability
considerations
+ Certain methods can be formulated to exactly preserve relevant single-particle
invariants
- “Symplectic” methods preserve Hamiltonian structure of dynamics
+ Accelerator problems can be demanding due to multiple frequency scales and
long tracking times/distances
- Hamiltonian dynamics; phase space volume does not decay
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S3C: Numerical Solutions of Moment Methods —
Numerical Stability

“Numerical Reversibility” test of stability:
In this method, the final value of an advance is used as an initial condition. Then
the problem is run backwards to the original starting point and deviations from the
initial conditions taken in the original advance are analyzed.
+ Provides a simple, but stringent test of accuracy
+ Will ultimately fail due to roundoff errors and cases where there is a sensitive
dependence on initial conditions
- Chaotic orbits a common example
+ Orbits can be wrong but qualitatively right
- Lack of convergence does not necessarily mean results will be useless
- Right “pattern” in chaotic structures can be obtained with inaccurate orbits
- Will quantify better later

We will now briefly overview an application of moment equations, namely the
KV envelope equations, to a practical high current transport lattice that was
designed for Heavy Ion Fusion applications at Lawrence Berkeley National
Laboratory.
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S3C: Moment Equation Application: Perp. KV Envelope Eqns

Neglect image charges and nonlinear self-fields (emittance constant) to
obtain moment equations for the evolution of the beam envelope radii

d?r, 20Q g2
+‘hyry ————— — = =0 ry = 24/ (22
ds? T+, 13 v (@)
d’r, 2Q 63
— KT _— = = O r, = 2 2
d82 'y Ty +Ty T,Z Yy (y )J_
ql

Dimensionless Perveance
measures space-charge strength

Q=

2meomedy3 33

5 11/2
€z =4 <x2>J_ <m'2>J_ - (mm')L]

(Ezn = VbPpe, normalized)

RMS Edge Emittance
measures X-X' phase-space area
~(beam size)sqrt(thermal temp.)

The matched beam solution together with parametric constraints from engineering,
higher-order theory, and simulations are used to design the lattice.
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Application Example Continued (2) — Focusing Lattice

Take an alternating gradient FODO doublet lattice

x(s) A
d 1Ly,/2 d
F Quad
D Quad | :
nly/2 ! :
3‘ L, - d=(1-n)Ly/2
: Lattice Period |
LP
d=(1- 17)7 n = Quadrupole Occupancy (0 < n < 1)
Focusing Strength
1 dB, .
. Ba ’ dy | Magnetic Quadrupole Rigidity

1 dE .,
[Bp]Boc | dy |
SM Lund, USPAS, June 2011

Electric Quadrupole [Bp| = mvfBre/q
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Application Example Contd. (3) — Matched Envelope Properties

Matched Beam Envelope and Focusing Function

7l // NN K*, E =2 MeV
N e N Current
ER N 71 I=800mA
g0 w7 ~_ Lattice
3.
5 . L, =0.5m

o n=1/2

oo = 80°/Lattice Period

0.4 0.6
Axial Coordinate (s/Ly)
Envelope Properties:

1) Low Emittance Case: ¢, = ¢, = 50 mm-mrad; o = 9.42° /Lattice Period

Max[r;] = Max[r,] = 17.3 mm  Max[r;] = —Min[r;] = 47.5 mrad
Min[ry] = Min[r,] = 9.41 mm Max[r,] = —Min[r}] = 47.5 mrad

2) High Emittance Case: ¢, = ¢, = 200 mm-mrad; o = 32.13°/Lattice Period
Max[r,] = Max[r,] = 18.9 mm  Max[r,] = —Min[r}] = 52.4 mrad

Min[r,] = Min[r,] = 10.1 mm Max[ry] = —Min[r}] = 52.4 mrad
SM Lund, USPAS, June 2011 Simulation Techniques 62

S4: Numerical Solution of Particle and Distribution Methods
S4A: Overview

Particle Methods — Generally not used at high space-charge intensity
Distribution Methods — Preferred (especially PIC) for high space-charge.
We will motivate why now.
Why are direct particle methods are not a good choice for typical beams?
Px N particle coordinates

beam {x;,pi}

Physical beam (typical)
N ~ 10" — 10" particles

phase—space
projection

Although larger problems are
possible every year with more
powerful computers, current
processor speeds and memory
limit us to

N < 10 particles
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Numerical Solution of Particle and Distribution Methods (2)

Represent the beam by Lagrangian “macroparticles” advanced in time
y

Partition local density
into macroparticles

Macroparticle Properties:

+ Same g/m ratio as real particle
- Gives same single particle dynamics in the applied field
+ More collisions due to macroparticles having more close approaches
- Enhanced collisionality is unphysical
- Controlled by smoothing the macroparticle interaction with the self-field.
More on this later.
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Numerical Solution of Particle and Distribution Methods (3)

Px
Direct Vlasov as an example: 4

[T

Discretize grid points {xi, pl_} \

Advance distribution f(x,p,t) at
discrete grid points in time

+ Continuum distribution advanced on a discrete phase-space mesh
- Extreme memory for high resolution. Example: for 4D x-p , yp, with 100
mesh points on each axis -> 100* = 10® values to store in fast memory (RAM)
+ Discretization errors can lead to aliasing and unphysical behavior
(negative probability, etc.)
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Numerical Solution of Particle and Distribution Methods (4)

Both particle and distribution methods can be broken up into two basic parts:
0) Moving particles or distribution evaluated at grid points through a finite time
(or axial space) step
1) Calculation of beam self-fields consistently with the distribution of particles
In both methods, significant fractions of run time may be devoted to diagnostics
+ Moment calculations can be computationally intensive and may be “gathered”
frequently for evolution “histories”
+ Phase space projections (“snapshot” in time)
+ Fields (snapshot in time)
Diagnostics are also critical!
+ Without appropriate diagnostics runs are useless, even if correct
+ Must accumulate and analyze/present large amounts of data in an
understandable format
Significant code development time may also be devoted to creating (loading) the
initial distribution of particles to simulate
+ Loading will usually only take a small fraction of total run time
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S4B: Integration of Equations of Motion

Higher order methods require more storage and numerical work per time step
+ Fieldsolves are expensive, especially in 3D, and several fieldsolves per step
can be necessary for higher order accuracy

Therefore, low-order methods are typically used for self-consistent space-charge.
The “leapfrog” method is most common

+ Only need to store prior position and velocity

+ One fieldsolve per time step

Iustrate the leapfrog method for non-relativistic particle equations of motion:
+ Develop methods for particles but can be applied to moments, distributions,...

m%:F:q(E+va)
dt
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Leapfrog Method for Electric Forces

Leapfrog Method: for velocity independent (Electric) forces
Leapfrog Advance (time centered): Advance velocity and position out of phase

\Z3 —V,;_
1) m “/QAt 2 _F, F=F)
Xi+1 — X4
2) 7+At = Viy1/2

Velocity:

\j

;1
Position:

=1 i—1/2 i
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i+ 1/2 i+l
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Leapfrog Method: Order
To analyze the properties of the leapfrog method it is convenient to write the map
in an alternative form:

Xi+1 — X4
— A — Vit1/2
. ) AV
1 —14+1
Xi —Xi—1 v
—x = Vi-1/2
A, /

Subtract the two equations above and apply the other leapfrog advance formula:

Vit1/2 — Vi—1/2 Xi11 — 2X; + X1
— m / / =lm i+ 7 7 :Fz’

2
A, A2
Note correspondence of formula to discretized derivative:

o*f _ fim =20+ fia + O(A2)
0x?|, A2 “
+ X;41 fixed from x;, x;-1, F; to O(Af)
+ Leapfrog method is 2™ order accurate
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Initial conditions must be desynchronized in leapfrog method

Leapfrog Method: Synchronization

Since x and v are not evaluated at the same time in the leapfrog method

synchronization is necessary both to start the advance cycle and for diagnostics
+ Initial conditions: typically, v is pushed back half a cycle

oA
Vo9 i 0o i
T I
: 1:0 : :11
: v : A >
—1/2 i=0 1/2 1

+ When evaluating diagnostic quantities such as moments the particle
coordinates and velocities should first be synchronized analogously to above
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Leapfrog Method for Magnetic and Electric Forces --
The Boris Method

Velocity Dependent Forces

Another complication in the evolution ensues when the force has velocity
dependence, as occurs with magnetic forces. This complication results because x
and v are advanced out of phase in the leapfrog method

F:qE+qv‘>\<\33

> velocity term
+ Electric field E accelerates
+ Magnetic field B bends particle trajectory without change in speed Ivl

A commonly implemented time centered scheme for magnetic forces is the
following 3-step “Boris” method:

1. Boris, in Proceedings of the 4" Conference on the
Numerical Simulation of Plasmas (Naval Research Lab, Washington DC 1970)
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The Boris Advance

Boris Advance: The coordinate advance is the same as previous leapfrog and the
velocity advance is modified as a 3 step procedure:
1) Half-step acceleration in electric field

VZQ) Ay

q
=Vi—1/2+ EEi?

2) Full step rotation in magnetic fie]d. Here choose coordinates so that B; is

. 1) . .
along the z-axis and and resolve Vg ) into components parallel/perpendicual to z

N B;
B, =BiZ we= g B; = |B;]
m
2 1
|| B’L : 1}272 = Ui,l)
LB, : va(f@) _ cos(wWeily)  sin(weAy) U;IZ)
i v?(“) —sin(weiAy)  cos(weiAr) USZ
3) Half-step acceleration in electric field
N C) N C R LY
Vitl/2 = Vi = Vi + B
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Boris Advance Continued (2) Leapfrog Advance: Errors and Numerical Stability
To better understand the leapfrog method consider the simple harmonic oscillator:
Complication: on startup, how does one generate the out-of-phase x, v advance 2 xz = Cycoswt + Cy sinwt
from the initial conditions? W = —sz, w = const | — _
+ Calculate E, B with initial conditions = o cos(wt + o)
+ Move v backward half a time step Discretized equation of motion Exact solution
- Rotate with B a half-step Tit1 — 22 + X1 9 xg = const (amplitude)
. = —W I;
- Decelerate a half-step in E A% ? o = const (phase)
Similar comments hold for synchronization of x, v for diagnostic accumulation Try a solution of the form  Z; = ceIViBe j=+v—-1, ¢=const (complex)
JoAy —jAy _ _ 2A2 . .
Now we will look at the numerical properties of the leapfrog advance cycle =e 2+e = —w At ThlS' h'as SO]l.ltlonS for wA; < 2
+ Only use a simple “electric” force example to illustrate issues 2 — 2cos(WA;) = w?A? and it is straightforward to show
t via expansion that for small wA;
~ 2A2
sin? (©Ar) - @At ~ (@A,)?
2 4 u)At = wAt + T
WA wA 5AL)P
o sin (R0 Z WA +0 [(@A)°]
2 2
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Leapfrog Errors and Numerical Stability Continued (2) Leapfrog Errors and Numerical Stability Continued (3)
It follows for the leapfrog method applied to a simple harmonic oscillator: Contrast: Numerical and Actual Orbit: Simple Harmonic Oscillator
+ For wA; < 2 the method is stable .
+ There is no amplitude error in the integration €T
+ For wA; < 1 the phase error is Numerical orbit A Exact orbit
- Actual phase: (dashed ellipse) Zo / w ~ (solid ellipse)
Y = wAy T / w
- Simulated phase: _ A,)3
b= OAi ~ whi + (“’24” i
- Error phase: - A,)3
=gy~ (“’2 4t) i
— xo
Note: i to get to a fixed time ~ A; ' and therefore phase errors decrease as O(A?)
// Example: w = 27 /7
Time step Steps for a zphase error —T 0/ w
J— . 3 ~ 2
Ay =017 247 /(0.1-2m)° ~3x10 Emittance = Exact: € = 73 Jw 5 1 (WAL)?
_ 3 ~ 5 -~ -
Ay =0.017 247 /(0.01-27)° &~ 3 x 10 " (Phase Space Area)fr @ Lol & = 22 & c 24
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Leapfrog Errors and Numerical Stability Continued (4)

The numerical orbit conserves phase space area regardless of the number of steps
taken! The slight differences between the numerical and actual orbits can be
removed by rescaling the angular frequency to account for the discrete step
+ More general analysis of the leapfrog method shows it has “symplectic”
structure, meaning it preserves the Hamiltonian nature of the dynamics
+ Symplectic methods are important for long tracking problems (typical in
accelerators) to obtain the right orbit structure
- Runge-Kutta methods are not symplectic and can result in artificial
numerical damping in long tracking problems
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Example: Contrast of Non-Symplectic and Symplectic Advances

Contrast: Numerical and Actual Orbit for a Simple Harmonic Oscillator
use scaled coordinates (max extents unity for analytical solution)
Symplectic Leapfrog Advance:
5 steps per period. 100 periods 10 steps per period. 100 periods

u(t) v,(t)
.

_—H =g
Cosine-type
initial
conditions Numerical . o5 a(t)
Orbit
)y (I:

Actual

Orbit
Sine-type
initial - (1)
conditions
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Example: Contrast of Non-Symplectic and Symplectic Advances (2)

Contrast: Numerical and Actual Orbit for a Simple Harmonic Oscillator
Non-Symplectic 2™ Order Runge-Kutta Advance: (see earlier notes on RK advance)

6 steps per period, 10 periods 20 steps per period. 50 periods

0.t

Cosine-type
initial
conditions

Sine-type
initial
conditions
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Example: Contrast of Non-Symplectic and Symplectic Advances (3)

Contrast: Numerical and Actual Orbit for a Simple Harmonic Oscillator
Non-Symplectic 4" Order Runge-Kutta Advance: (analog to notes on 2" order RK adv)

5 steps per period, 20 periods 10 steps per period. 200 periods
v,(t) v (t)

-

Cosine-type
initial
conditions

a(t)

Sine-type
initial
conditions

L (1)
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Example: Leapfrog Stability Applied to the Nonlinear
Envelope Equation in a Continuous Focusing Lattice

For linear equations of motion, numerical stability requires:

Here, k is the wave number of the phase advance of the quantity evolving under
the linear force. The continuous focusing envelope equation is nonlinear:

d?r, 20Q g2
— 2 ki, —— -2 =0
ds? + KT Ty 4Ty TS
d*ry 2Q g2

k2gry — —f— — L =0
ds? + FoTy TetTy T3

Several wavenumbers k can be expressed in the envelope evolution:
kg =0/L,
kgo = o0/ Ly

kg = /K2y + 3K3
kp = /2k2, + 2k2
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.. Depressed  Particle Betatron Motion
.. Undepressed Particle Betatron Motion

.. Quadrupole Envelope Mode

.. Breathing Envelope Mode
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Example: Leapfrog Stability and the Continuous Foc. Envelope Equation (2)

Expect that kgoAg < 2 for the fastest (largest k) component determines stability.

Numerical simulations for an initially matched envelope with: 0/0o = 1/2

ksl kaoAs koA, kpA,  Stable?
0500 1.00  1.32 158 Yes
0.600 1.20  1.59 1.90 Yes
0.630 1.26  1.67 1.99 Yes
0.635 1.27  1.68 2.01 No
0.640 1.28  1.69 2.02 No

The highest k-mode, the breathing mode, appears to determine stability, i.e.
kA, < 2 is the stability criterion. Other values of o /0y produce results in
agreement with this conclusion.
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Example: Leapfrog Stability and the Continuous Foc. Envelope Equation (3)

Numerical simulations an initially matched envelope with:0o = 80°, o /o¢ = 1/2
Note that numerical errors seed small amplitude mismatch and that the plot scale
to the leftis ~ 10", corresponding to numerical errors.

Beam Envelope Simulation Beam Envelope Simulation
G e

251 ]
y0+7 r ‘ ‘

K

a
S

| ’Jl ‘H nu’h Al \‘;yll H J\M
H l ‘Wl H ‘\ ‘M H‘ H «

2.

73 (mm)
$
73, (mm)
2]
=
S

2a8)

1 ‘w’w“ f!‘“\“‘

0 50 100 150 200 0 50 100 150 200
s/ Ly

?47 r b

. e o

y0=5.984134206021??E+0
Analytically Determined Radius

kA, — 1.99
Analytically Determined Radius kpAg — 2.01
kpAs = 1.90 kpAs = 2.02
kpAs = 1.99
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Comments of 2D and 3D Axisymmetric Particle Moves

To be added:

Comments on moving ring particles:

- 3D axisymmetry => particles rings, 3D axisymmetry => particles are infinite
cylindrical shells.

- Angular momentum will be conserved for such particles (can rotate)

- Easier to do in many cases using X-y movers
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S4C: Field Solution

The self-consistent calculation of beam-produced self-fields is vital to accurately
simulate forces acting on particles in intense beams

F=¢q(E+vxB)

+ Techniques outlined here are also applicable to distribution methods
Linear structure of the Maxwell equations allow fields to be resolved into
externally applied and self (beam generated) components

E=E,+E;
B =B, +B;
E,, B, applied fields generated by magnets and electrodes

+ Sometimes calculated at high resolution in external codes and imported or
specified via analytic formulas

+ Sometimes calculated from code fieldsolve via applied charges and currents
and boundary conditions

E,, B, self fields generated by beam charges and currents

+ At high beam intensities can be a large fraction (on average) of applied fields

+ Important to calculate with realistic boundary conditions
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Electrostatic Field Solution

For simplicity, we restrict analysis to electrostatic problems to illustrate methods:
B =B,
E=E,+E;

B _specified via another code or theory

E_due to biased electrodes and E_due to beam space-charge

The Maxwell equations to be solved for E are

V-E= L + boundary conditions on E
€0

VxE=0

V x E = 0 implies that we can always take E = —V¢ and so

Vigp = —a + boundary conditions on ¢
€o
E=-V¢
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Electrostatic Field Solution: Typical Problem

As an example, it might be necessary to solve (2D) fields of a beam within an
electric quadrupole assembly.

Y

Beam

99

A O T

specified on domain
boundary or
x consistently to model
assembly in free
space

N4 electrodes held at +V
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Electrostatic Field Solution by Green's Function

Formally, the solution to ¢ can be constructed with a Green's function, illustrated
here with Dirichlet boundary conditions:

V2G(x,x") = —4n6(x — x') Dgflmtlons: )

I = — =1n-—

el )lx'b =0 on ox
Xy = X' on boundaries N = Unit normal vector to

boundary surface
This yields (Jackson, Classical Electrodynamics)

$(x) =

47360 /Vdgw' p(x')G(x, % 2ot gty OGX)
!

- on'
Self-field component

= ¢s = ¢a

09 _ O¢a
B, =- ox Ea = ox

Applied field from electrode potentials
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Electrostatic Field Solution by Green's Function (2)

Applied Field ¢a:
Can be calculated in advance and need not be recalculated if transverse
geometry does not change

+ Can be analytical in simple situations
Self Field ¢s :
Let: gm, X; = Macro-particle charge and coordinate

N, = Macro-particle number

1
¢s = /d%’p(x')G(x x' 47T€0 Z/d%’é x' —x;)G(x,x)

4dmeg

¢s = 47T€0 ZG X, X;)

Then the field at the ith macro-particle is (self—ﬁeld term removed):
N,

% qm i 8G(X7 xj)

ox

- 4eg ox

Esi =

X=X; X=X

i #i
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Electrostatic Field Solution by Green's Function (3)

The Green's Function expression for ¢s will, in general, be a numerically
intensive expression to evaluate at each macroparticle
* Np(Np — 1) terms to evaluate and G itself will in general be complicated and
may require many costly numerical operations for each term, limiting Np
+ Small Np for which this procedure is practical will result in a noisy field
- Enhanced, unphysically high, close approaches (collisions) with poor
statistics can change the physics
+ Special “fast multipole” methods based on Green's functions can reduce the
scaling to ~Np or ~Npln(Np).
- Coefficient is large and smoothing is not easily implemented, often
rendering such methods inferior to gridded methods to be covered shortly

/l Example: Self fields in free space

G(x,x') = ! . Eg = anr Z 7|(Xixj)

T st —
[ —x'| 7 xi—xF
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Field Solution on a Discrete Grid

An alternative procedure is needed to
0) Calculate fields efficiently by discretization of the Maxwell equations
1) Smooth interactions to compensate for limited particle numbers

Approach: Solve the Maxwell Equations on a discrete spatial grid and then
smooth the interactions calculated from the gridded field.
Discretization: 2D uniform grid (1D and 3D analogous)

Ti = Tmin + ZA:E Am - (mma:r - xmzn)/nw 1= O; 1727 e
Yi = Ymin +jAy A ( maz — ymin)/ny j=0,1,2,..,n
)

E.. = ZT;

5 U B ¢((w L5 y]) Field components, potential,
i = i Yj and charge are gridded

pij = p(m“ yj)

Comments:
+ pij must be calculated from macro-particles, not necessarily on grid points
+ Fields will ultimately be needed at marco-particle coordinates, not on grid

These issues will be covered later under “particle weighting” in Section 4D
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Field Solution on a Discrete Grid:
Example Problem, Beam in an Electric Quadrupole

Beam in an electric quadrupole lattice (2D)

Y

($max; ymax)

99

‘/¢Or%

|| »  specified on grid

boundary and possibly
|| on surfaces within the
grid

(xmin 3 ymin)
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Gridded Field Solution: Discretized Poisson Eqn.

For 2™ order centered differencing, the Poisson Equation

vip=-L
becomes €0
Pit1,5 = 20ij + bim1yj | Pijr1 = 20i5 t bij1 __Piy
A2 A2 €
T y 0
with the gridded field components calculated as
g Gy —diouy
i 2A,
B _ Gi, j+1 — Pi, j—1
vis 24,

Boundary conditions must also be incorporated as constraint equations

Dirichlet Conditions: ~ ¢p  specified on surfaces

i 0 .
Neumann Conditions: —¢ specified on surfaces
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Gridded Field Solution: Discretized Dirichlet Boundary Cond

Dirichlet Conditions: ¢ specified on surface

Example: ¢ = V = const atright grid edge

o=V
Y 4 surface
. . . » V
®n,,; =V = const
¢ ¢ ¢ Vv For t = ng — 1 cells
. . . >

Neg—3 Ng—2 ng— 1 Ng

V=201t One2j | Fnetijtt =20ne—1,j+ Pne1jo1 . Praiy

A?E A% €0
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Gridded Field Solution: Discretized Neumann Boundary Cond

. 9 .
Neumann Conditions: —¢ specified on surfaces

on

Example: 9¢ = G = const at right grid edge

on
9 _
Y4 Sirfce
surtace Use 1* order forward
. o R v difference formula at surface
v ¢nm_17j_¢nw:j _G
[ ) [ ] L] / =
A,
>z

Ng—3 Ng—2 ng— 1 N
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Solution of Discretized Poisson Eqn -- Direct Matrix Method

The finite-differenced Poisson Equation and the boundary conditions can be
expressed in matrix form as:

M-®=S8

M = Coefficients matrix from local finite differences. This matrix will be
sparse, i.e., most elements will equal zero

& — Vector of unknown potentials at grid points

S = “Source” terms resulting from beam charge deposited on the grid (p;;) and
known potentials from boundary condition constraints

Formal solution found by matrix inversion:
——1
=M -S

1

Direct inversion of \f "is not practical due to the large dimension of the problem

+ M will in general be sparse due to use of local, low-order finite differencing
+ Many fast, numerically efficient inversion methods exist for sparse matrices
- Specific method best used depends on type of differencing and BC's
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Example Discretized Field Solution

To illustrate this procedure, consider a simple 1D example with Dirichlet BC's

d’>¢ _p o(x) =V, left BC
dz?2 € o(z,) =V, right BC
o=V 0 b=V, Discretize to O(AZ) :
$it1 —20i+ i1 pi
7 A2 €0
-
o =V,
T Xy Pn. = Vi
T
1 =10 =

T =x+ 10z, Ay =(xr, —x1)/np; 1=0,1,2,...,n,
Note: py , p,, irrelevant

+ Correspond to surface terms that fix boundary condition potentials
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Example Discretized Field Solution (2)

The 1D discretized Poisson equation and boundary conditions can be expressed in
matrix form as:

f2 07 [ ] 1 Y
1 —2 1 ¢2 P2
. . : - 75 :
1 -2 1 ®n,—3 Prg—3
1 -2 1 Orp—2 Prg—2
0 Y I | prr 4 £V,

Matrix has tri-diagonal structure and can be rapidly inverted using optimized
numerical methods to efficiently calculate the ¢;
+ Sparse matrices need not be stored in full (waste of memory)

SM Lund, USPAS, June 2011 Simulation Techniques 98

S4: Particle Methods — Field Solution Methods on Grid

Many other methods exist to solve the discretized field equations. These methods
fall into three broad classes:
1) Direct Matrix Methods
+ Fast inversion of sparse matrix
2) Spectral Methods
+ Fast Fourier Transform (FFT)
- Periodic boundary conditions
- Sine transform (¢ = Oon grid boundary)
- FFT + capacity matrix for arbitrary conductors
- Free space boundary conditions
3) Relaxation Methods
+ Successive over-relaxation (SOR)
- General boundary conditions and structures
+ Multigrid (good, fast, and accurate method for complicated boundaries)

SM Lund, USPAS, June 2011 Simulation Techniques 99

Field Solution Methods on Grid Continued (2)

Sometimes methods in these three classes are combined. For example, one might
employ spectral methods transversely and invert the tri-diagonal matrix
longitudinally.

Other discretization procedures are also widely employed, giving rise to other
classes of field solutions such as:

+ Finite elements

+ Variational

+ Monte Carlo

Methods of field solution are central to the efficient numerical solution of intense
beam problems. It is not possible to review them all here. But before discussing
particle weighting, we will first overview the important spectral methods and
FFT's

SM Lund, USPAS, June 2011 Simulation Techniques 100




Spectral Methods and the FFT

The spectral approach combined with numerically efficient Fast Fourier
Transforms (FFT's) is commonly used to efficiently solve the Poisson Equation on
a discrete spatial grid
+ Approach provides spectral information on fields that can be used to smooth
the interactions
+ Efficiency of method enabled progress in early simulations in the 1960s
- Computers had very limited memory and speed
+ Method remains important and can be augmented in various ways to
implement needed boundary conditions
- Simple to code using numerical libraries for FFT
- Efficiency still important ... especially in 3D geometries
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Spectral Method: Discrete Fourier Transform
Mlustrate in 1D for simplicity (multidimensional case analogous)

d2d>__£

dxz? €0

Continuous Fourier Transforms (Reminder)

B = [ avetom = [ dvet o)
o) = |

— 00 —00
o¢]

dk e—z’kwé(k

o nr

=
8
~—
I
8
U
o
|
=
8
X
—~
Sy
~—

—o0

VI
) (k)

> dk . Ak
¢($):/ 5 € ’“i—kg

—0o0

1
Transform Poisson Equation: k2$(k

Similar procedures work to calculate the field on a finite, discrete spatial grid

+ Develop by analogy to continuous transforms
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/I Aside: Transform conventions and notation vary

Physics convention:
+ Reflects common usage in dynamics and quantum mechanics

o) = [ deeo
> dk —ikx 7
o@) = [ gre i)
Symmetrical convention:
+ Factors of V27 used symmetrically can be convenient numerically
~ * dxr
k) = o ezkz T
o) = [ et
> dk —ikx T
o) = [ =)

oo V2T

Sometimes | — —3

Subtlety:
+If ¢(z) # 0 as |£| — 0o then k must contain a large enough positive
imaginary part for transform to exist and contour to carry out inversion

contour must be taken consistently //
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Discrete Fourier Transform (2)

Discretize the problem as follows:

Tj = Tmin +]Awa A:c == xmaxn_ xmln’ ] 2051727“-7nm
x
_ ng + 1 grid points
= (s
01 = 9(z;) n, distinct values
2mn Na Ny (periodic)
k, = n=——,.,0,...,—
ng Ay 2 2

+ In this section we employ j as a grid index to avoid confusion with 1 = v/ —1

The discrete transform is the defined by analogy to the continuous transform by:

gg(k:n) = / dre*r®p(z) — bn = Ay Zeik”(”ﬂ'*“’mi“)(bj

=0

T
- i27mnj
-, Y e (20,
=0 Nt
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Discrete Fourier Transform (3)

Grid Transform
¢j — ¢n
(ng + 1 values) (ngy + 1 complex values)
Note that ¢y, is periodic in n with period n_
G—p = (bnm—n
* Letn=0,1,2,...,n,

. so n and j have the same ranges

Then an inverse transform can be constructed exactly:

+ This exact inversion is proved in the problems by summing a geometric series
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Spectral Methods: Aliasing

The discrete transform describes a periodic problem if indices are extended
+ Discretization errors (aliasing) can occur
lim () =

Figure to be edited:

r—F00
(z)
@(z) Potential
. Spacing = A,
Plots will be / \_<
wwwwwww - T
replaced with i) Gontipuous min e
real transforms ragsiorm s \
based on a k
Gaussian ¥ Disetete /e /e
. ; . . Transform Leseve,
distribution in i ...
future versions S HHH *
& Discretdexterd indices )7r/Az T/
of the notes Transform,.. R R R R
l- 'l l. '. l. 'I
- A k
4 =31 /A, A /0 /A,
’ RN LI ovtite,
.. '. .. '. O. ..
x
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Discrete Transform Formulas
Application of the Discrete Fourier Transform to solve Poisson's Equation:

_do Qi1 — P

E: = dx = FPuj= 2A,
d2¢ p Pir1 — 205 + ¢j1 Pj
e Az = e
Applying the discrete transform yields:
- - sin(kn,Ay) 2mn
Exn = thn®n n — kn — kn =
Winfn K { kn Dy } (ne + DA,
= ki dif (kn Ay)
Poisson's Equation becomes:
p _ in (knAg/2)77
wm P K2 R2Aif (kA 2) = k2 | SR Ae/2)
¢ K2 ’ n ndl ( / ) n knAx/2

Note: factors of an need only be calculated once per simulation (store values)
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Derivation of Discrete Transform Eqns.

/Il Example Derivation of a formula for the discrete transformed E-field:

Discretized E-field E,; = _ it — i
QA,,:
i2mng \ -
¢J_ na—i-lA Z (_nx+1>¢"

Transforms

12mng \ ~
5= T z ( 1)

Substitute transforms into difference formula:

o i oxp (=279 Y 3 [ (— 200 _ op (27T
a o P ng + 1 " P ng + 1 P ng + 1
N nZ‘ ox i2mnj ; Z exp i2mnj sin 27mn
o xn:O P nz+1 Ean = anrl ng + 1
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n n
= i2mnj \ =~ e 2mng \ . 2mn \ -~
A, exp | — Epn =1 exp | — sin
e (2T By iy e (- 2T Vs (2 )4,
n=0 n=0
This equation must hold true for each term in the sum proportional to

O
exp (_ Leminyg > to be valid for a general j.

ng +1

A, ng + 1
b = 2mn
_ sin(knAg)] ~
= Ewn = 1Rkn |: knAm :| "
= ik, dif(knAg)dn 1
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Spectral Methods: Discrete Transform Field Solution

Typical discrete Fourier transform field solution (not optimized)

Forward Multinl Inverse Finite
Transform Py Transform Difference
pji — Pn — o — ¢ — Ey
1
DFT — IDFT
K3

+ an factors can be calculated once and stored to increase numerical efficiency
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Discussion of Spectral Methods and the FFT

The Fast Fourier Transform (FFT) makes this procedure numerically efficient
+ Discrete transform (no optimization), ~(n_+ 1)* complex operations

+ FFT exploits symmetries to reduce needed operations to ~ (nx + 1)ln(nx +1)
- Huge savings for large n_

+ The needed symmetries exist only for certain numbers of grid points. In the
simplest manifestations: n + 1=2°,p=1,2,3, ..
- Reduced freedom in grid choices
- Other manifestations allow n_+ 1 =2’ and products of prime numbers for
more possibilities
The FFT can be combined with other procedures such as capacity matrices to
implement boundary conditions for interior conductors, etc.
+ Allows rapid field solutions in complicated conductor geometries when
capacity matrix elements can be pre-calculated and stored
+ Symmetries can be exploited using 4x domain size to implement free-space
boundary conditions (see Hockney and Eastwood)
FFT is the fastest method for simple geometry
+ Simple to code using typical numerical libraries for FFT's
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S4D: Weighting: Depositing Particles on the Field Mesh
and Interpolating Gridded Fields to Particles

We have outlined methods to solve the electrostatic Maxwell's equations on a
discrete spatial grid. To complete the description we must:
+ Specify how to deposit macro-particle charges and current onto the grid
+ Specify how to interpolate fields on the spatial grid points to the
macroparticle coordinates (not generally on the grid) to apply in the particle
advance
+ Smooth interactions resulting from the small number of macro-particles to
reduce artificial collisions resulting from the use of an unphysically small
number of macro-particles needed for rapid simulation

This is called the particle weighting problem
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Weighting (2)

Particle weighting problem for electrostatic fields
y

|

| [Adapted from Birdsall and Langdon]

It is found that it is usually better to employ the same weighting schemes to
deposit both the macro-particle charges and currents on the mesh and to
extrapolate the fields at gridded points to the macro-particles

+ Avoids unphysical self-forces where the particle accelerates itself
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Weighting Methods

Many methods of particle weighting exist. They can be grouped into 4 categories:
1) Nearest Grid Point
2) Cloud in Cell (CIC)
- Shaped particles
- PIC method, linearly shaped particles
3) Multipole
- Dipole, subtracted dipole, etc.
4) Higher order methods
- Splines
- k-space cutoffs in discrete transforms

Possible hybrid methods also exist. We will illustrate methods 1) and 2) for

electrostatic problems. Descriptions of other methods can be found in the
literature.
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Weighting: Nearest Grid Point

1) Nearest Grid Point: Assign charges to the nearest grid cell

+ Fast and simple: Show for 1D; 2D and 3D generalization straightforward
+ Noisy

itheell qgv = Charge of macro-particle

o+ ITMm
i : Lioowa i1

Qo Coordinate of macro-particle

S S

z; = Closest grid cell

xi—% .’L'j+%

Projected Density, ith Grid Charge Deposition on ith Grid:

a ¢ = qm
Field “Interpolation” to Particle:
T T Ezlz:zM =Fy

-—

Ay

Comments: [Adapted from Birdsall and Langdon]
+ Currents can be interpolated to grid similarly for electromagnetic field solves
and/or diagnostics
+ In 1D electrostatics Green's function is easy to calculate; use 1D only to show

method simply; 2D and 3D are relevant cases
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Weighting : Cloud in Cell

2) Cloud in Cell: Shaped macro-particles pass freely through each other

+ Smoother than Nearest Grid Point, but more numerical work

+ For linear interpolation results in simple, commonly used “Particle in Cell”
Uniformly Charged Cloud

(PIC) method

Projected Density, ith Grid

TM — Ty

[Adapted from Birdsall and Langdon]
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Cloud in Cell (2)

qm , *m = Charge and coordinate of macro-particle

i = Closest grid cell

Charge Deposition on ith Grid:
G = |:Az — (xm —«Tz)} _
7 Am
Ty — T4
Gi+1 =qM | —x
Ay
Field Interpolation to Particle:

Titr1 — TM T — X
Ea:|x=:cM = [HT} Ei+ {TZ} Eipa

Ti41 —TM

Ay

Comments:
+ Linear interpolation results in triangularly shaped particles
+ Shape smooths interactions reducing collisionality
- Vlasov evolution with limited number of shaped particles
+ Simple shape is fast to calculate numerically
+ Currents can be interpolated to grid similarly for electromagnetic solving

and/or diagnostics
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Weighting: Area Weighting

In a 2D cloud-in-cell system, weighting is accomplished using rectangular “area
weighting” to nearest grid points

i j+1 Git+1,54+1
Ziy Yj+1 Titls Yj+1
As | A, 4dm = Macro-particle charge
A, 3 (xar, ymr) = Macro-particle coordinates
| z
,,,,,,,,, I IMYM g;; = Mesh charges
A Ay
Ziy Yj Titl, Y5
qij it1,j
B EEEE—
A,
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Area Weighting (2)
Charge Deposition to Four Nearest Grids:
Ay
Gij = qm Ay = (Tir1 — 2m)(Yj+1 — Ynr)
J Asz J
B A= (o — ) )
i+1,j = N A 3= TM — Ti)\Yj+1 —
qi+1,5 = dmMm AmAy 3 M Yj+1 —YM
Ao
qi,j+1 = 4™ ALA, Ay = (i1 — ) (Ymr — j)
Ay

Qit1,j+1 = (IMm Ay = (zp — x3)(ym — ;)
Field Interpolation From Four Nearest Grids:
Ay Az

Az Ay
AxAy J + AacAy +1,5 + A:L'Ay J+1 + AxAy +1,5+1

Comments:
+ Procedure easily generalized to 3D using opposing diagonal volume elements
of the eight grid points bounding the grid cell
+ Currents can be interpolated to grid similarly for electromagnetic solving

and/or diagnostics
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/I Aside: Efficient numerical numerical operation for area weighting

Give outline on how to efficiently
code for rapid calculation with
minimal number of multiplications.

1"
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Higher Order Weighting: Splines

To be added: Slide on Splines to

illustrate what is meant by higher order methods

Make Points:

- Requires more numerical work and harder to code

- Some schemes can introduce neg probability problems

- Should evaluate against simpler low order methods using
same computer power to see which method wins.
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S4E: Computational Cycle for Particle-In-Cell Simulations

We now have (simplified) notions of the parts that make up a
Particle-In-Cell (PIC) simulation of Vlasov beam evolution
0) Particle Moving
1) Field Solver on a discrete grid
2) Weighting of particle and fields to and from the grid

Integration of equations
of motion, moving particles

F—uv—ua

‘Weighting A Weighting
(E,B), - F, — (@ v = ()

Integration of field

equations on grid

(B,B); — (p, )
[Adapted from Birdsall and Langdon]
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Computational Cycle for Particle-In-Cell Simulations Contd.

Comments:
+ Diagnostics must also be accumulated for useful runs (see S5)
- Particles (coordinates and velocities) and fields will need to be
synchronized (common time) when diagnostics are accumulated
+ Initial conditions must be set (particle load, see S6)
- Particle and field variables may need appropriate de-synchronization to
initialize advance
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S6A: Overview

Diagnostics are extremely important. Without effective diagnostics even a
correct and well converged simulation is useless. Diagnostics must be well
formulated to display relevant quantities in a manner that increases physical
understanding by highlighting important processes. This can be difficult since
there can be a variety of issues and multiple effects taking place simultaneously.

S5: Diagnostics

Diagnostics can be grouped into two broad categories:
1) Snapshot Diagnostics
(Fixed instant in time)
+ Examples: Plots of particle distribution projections at a particular values
ofsort
+ Data can be saved to generate plots after the run or just the needed plots
can be generated during the run using linked graphics packages etc.
+ Sometimes presented as a sequence of images (movie) to show evolution
2) History Diagnostics
(Time history of evolution)
+ Examples: plots of moment for the statistical beam centroid, envelope,
and emittances
+ Data for history plots must be accumulated and saved over several

simulation advance steps
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Snapshot Diagnostics: Particle Phase-Space Projections
To be added.
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Snapshot Diagnostics: Fields
To be added.
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History Diagnostics: Moment Evolutions

Moments typically have a lesser degree of noise since they generally average over

many macroparticles
+ 2D case => full beam
+ 3D case => local z-slice of beam

Moments commonly of interest include:

+ Centroid
- Measures how far beam is off-center (from design orbit)
X = ()1 X'= ()1
Y =(y. Y' =)L
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+ rms Beam Extent
- Gives size of the beam

- Specifies “match” of periodic focusing flutter to lattice
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+ rms Phase Space Area (Emittance)
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S6: Initial Distributions and Particle Loading
S6A: Overview

To start the large particle or distribution simulations, the initial distribution
function of the beam must be specified.
+For direct Vlasov simulations the distribution need simply be deposited on the
phase-space grid
For PIC simulations, an appropriate distribution of macro-particle phase-space
coordinates must be generated or “loaded” to represent the Vlasov distribution
Discussion:
In realistic accelerators, focusing elements are s-varying. In such situations there
are no known smooth equilibrium distributions.
+ The KV distribution is an exact equilibrium for linear focusing fields, but has
unphysical (singular) structure in 4-dimensional transverse phase-space
Moreover, it is unclear in most cases if the beam is even best thought of as an
equilibrium distribution as is typical in plasma physics. In accelerators, the beam
in generally injected from a source and may only reside in the machine (especially
for a linac) for a small number of characteristic oscillation periods and may not
fully relax to an equilibrium like state within the machine.
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Initial Distributions: Source-to-Target Simulations
The lack of known, physically reasonable equilibria and the fact that the beams
are injected from a source motivates so-called “source-to-target” simulations
where particles are simulated off the source and tracked to the target. Such first
principles simulations are most realistic if carried out with the actual focusing
fields, accelerating waveforms, alignment errors, etc. Source-to-target
simulations are highly valuable to measure expected machine performance.
However, ideal source-to-target simulations can rarely be carried out due to:
+Source is often incompletely described
- Example: important alignment and material errors may not be known
+Source may contain physics not adequately in imperfectly modeled
- Example: plasma injectors with complicated material physics, etc.
+Computer limitations:
- Memory required and simulation time
- Convergence and accuracies
- Limits of numerical methods applied
Ex: singular description needed for Child-Langmuir model of
space-charge limited injection
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Initial Distributions: Types of Specified Loads

Due to the practical difficulty of always carrying out simulations off the source,
two alternative methods are commonly applied:
1) Load an idealized initial distribution
+ Specify at some specific time
+ Based on physically reasonable theory assumptions
2) Load experimentally measured distribution
+ Construct/synthesize a distribution based on experimental measurements

Discussion:
The 2" option of generating a distribution from experimental measurements,
unfortunately, often has practical difficulties:
+ Real diagnostics often are far from ideal 6D snapshots of beam phase-space
- Distribution must be reconstructed from partial data
- Typically many assumptions must be made in the synthesis process
+ Process of measuring the beam can itself change the beam
+ It can sometimes be helpful to understand processes and limitations starting
from cleaner, more idealized initial beam states
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Discussion Continued:
Because of the practical difficulties of loading a distribution based exclusively on
experimental measurements, idealized distributions are often loaded:
+ Employ distributions based on reasonable, physical ansatzes
+ Use limited experimental measures to initialize:
- Energy, current, rms equivalent beam sizes and emittances
+ Simpler initial state can often aid insight:
- Fewer simultaneous processes can allow one to more clearly understand
how limits arise
- Seed perturbations of relevance when analyzing resonance effects,
instabilities, halo, etc.
A significant complication is that there are no known exact smooth equilibrium
distribution functions valid for periodic focusing channels:
+ Approximate theories valid for low phase advances may exist
Startsev, Davidson, Struckmeier, and others
Formulate a simple approximate procedure to load an initial distribution that
reflects features one would expect of an equilibrium
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S6B: KV Load and the rms Equivalent Beam

See handwritten notes from USPAS 06/08
+ Will be updated in future versions of the notes
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S6C: Beam Envelope Matching

To be added in future versions.
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S6D: Semi-Gaussian Load

See handwritten notes from USPAS 06/08
+ Will be updated in future versions of the notes
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S6E: Initial PseudoEquilbrium Distributions

Based on Continuous Focusing Equilibria
Simple psudo-equilibrium initial distribution:
+ Use rms equivalent measures to specify the beam
- Natural set of parameters for accelerator applications
+ Map rms equivalent beam to a smooth, continuous focused matched beam
- Use smooth core models that are stable in continuous focusing:
- Waterbag Equilibrium
- Parabolic Equilibrium
- Thermal Equilibrium See Notes on: Transverse Equilibrium Distributions
+ Transform continuous focused veam for rms equivalency with original beam
specification
- Use KV transforms to preserve uniform beam Courant-Snyder invariants

Procedure will apply to any s-varying focusing channel

+ Focusing channel need not be periodic

+ Beam can be initially rms equivalent matched or mismatched if launched in a
periodic transport channel

+ Can apply to both 2D transverse and 3D beams
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Procedure for Initial Distribution Specification

Assume focusing lattice is given:

R (), y(s)

Strength usually set by specifying
undperessed phase advances

00zs Ooy

specified

Step 1:
For each particle (3D) or slice (2D) specify 2™ order rms properties at axial
coordinate s

Envelope coordinates/angles:

ra(s) = 2(a%))/ v (s) = 2(aa’) L /()
ry(s) =2(y)"/* v (s) = 2(yy') 1 /()
Emittance:

ex(s) = 4[(?) L (') 1L — (z2")]V/?

ey(s) =4[ L) L — ()3 ]"?

Perveance:

_ gA(s)
2meomy; ()52 (s)c?
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Procedure for Initial Distribution Specification (2)

If the beam is rms matched, we take:

, - 20 - i B Kz(s+ Lp) = Kz(s)

T et T (s Lp) =y (5)
2 2 —

DO - B
z Y ] Ty(s+ Lp) = 1y(s)

+ Not necessary even for periodic lattices
- Procedure applies to mismatched beams

SM Lund, USPAS, June 2011 Simulation Techniques 139

Procedure for Initial Distribution Specification (3)

Step 2:
Define an rms matched, continuously focused beam in each transverse s-slice:

Continuous s-Varying

rp(s) = Envelope Radius
£b(s) =
Q(s) =

Define a (local) matched beam focusing strength in continuous focusing:
0
2
1, 2 Q 2
P R, — < — b =0
/ 3070 . 7“1%

k1230<5) =

Emittance

Perveance

\/ T (8)ry(s)
\Ex(8)ey(s)
Q(s)

_>
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Procedure for Initial Distribution Specification (4)

Step 3:
Specify an rms matched continuously focused equilibrium consistent with step 2:

Specify an equilibrium function:

1

1 q¢
fJ-<may7m/ay/>:fJ_(HJ_) HJ_: EXE+§kgoxi+7

my; By c?

and constrain parameters used to define the equilibrium function with:

A= q/dQ:U /dzx' fiL(HL)
4 [dPz [d®% 2*f(H.)
fde fdQl'/ fL(HL>
ey _Afd’x [dPx’ 2 fi(H.) rms edge emittance

7 [dPx [d2a fL(HL)

Line Charge <--> Perveance

2 .
ry = rms edge radius

+ Constraint equations are generally highly nonlinear and must be solved numerically
- Allows specification of beam with natural accelerations variables
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Procedure for Initial Distribution Specification (5)

Load N particles in x,y,x',y' phase space consistent with continuous focusing
equilibrium distribution f, (H )
Step A (set particle coordinates):
Calculate beam radial number density n(r) by (generally numerically) solving the
Poisson/stream equation and load particle x,y coordinates:

T =rcosf

y =rsinf
- Radial coordinates r: Set by transforming uniform deviates consistent with n(r)
- Azimuthal angles 0: Distribute randomly or space for low noise
Step B (set particle angles):
Evaluate f) (U, r) with U = \/ 22 4+ /2 at the particle x, y coordinates loaded in
step A to calculate the angle probability distribution function and load x', y' coordinates:
2’ =Ucos¢

y =Usin&
- Radial coordinate U: Set by transforming uniform deviates consistent with f1 (U, r)
- Azimuthal coordinate &: Distribute randomly or space for low noise
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Procedure for Initial Distribution Specification (6)

Step 4:
Transform continuous focused beam coordinates to rms equivalency in the system

with s-varying focusing:

Ty Ty
T=—% Y=Y
Tb Tb
/ /
Ex Th r Ey T r
/ z / b
=y = 2y by,
b Tg Tb Ep Ty Tp

Here, {xi}v {yi}, {33;}’ {y;} are coordinates of the continuous equilibrium
loaded

+ Transform reflects structure of Courant-Snyder invariants
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Comments on Procedure for Initial Distribution Specification

+ Applies to both 2D transverse and 3D beams
+ Easy to generalize procedure for beams with centroid offsets
+ Generates a charge distribution with elliptical symmetry
- Sacherer's results on rms equivalency apply
- Distribution will reflect self-consistent Debye screening
+ Equilibria are only pseudo-equilibria since transforms are not exact
- Nonuniform space-charge results in errors
- Transform consistent with preserved Courant-Snyder invariants for
uniform density beams
- Errors largest near the beam edge - expect only small errors for
very strong space charge where Debye screening leads to a flat density
profile with rapid fall-off at beam edge
+ Many researchers have presented or employed aspects of the improved loading
prescription presented here, including:
I. Hofmann, GSI M. Reiser, U. Maryland
E. Startsev, PPPL Y. Batygin, SLAC

M. Ikigami, KEK
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PIC simulations with the Warp code (see S9) were carried out to verify
that the loading procedure results in less fluctuations and waves in self-
consistent Vlasov evolutions from the load

Show evolutions from a matched load in a periodic FODO quadrupole transport
lattice:
pseudo-thermal
semi-Gaussian (for contrast)
Find:
+ Works well for 00 < 85°

- Should not work where beam is unstable and all distributions are expected to
become unstable for g >~ 85°  see:

Experiment:  Tiefenback, Ph.D. Thesis, U.C. Berkeley (1986)

Theory: Lund and Chawla, Proc. 2005 Part. Accel. Conf.
+ Works better when matched envelope has less “flutter”
- Solenoids: larger lattice occupancy 7]

- Quadrupoles: smaller o
- Not surprising since less flutter” corresponds to being closer to
continuous focusing
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Warp PIC Simulation (see S9) Results — Pseudo Thermal Equilibrium

00 =170°, L,=05m, &, =¢e,=>50mm-mrad

ofog=0.2
3 E E Ay 7{»‘ #{\ i Qﬁ
f “\NM Wiy
e e i, oM, i fwvaWry\ A ,
o Y |
| ! |
J \ [ \\ | \
s s s N
/oy =0.7
‘ %w \’ I JO
i, [ H H | £ )‘ '
I / } / ﬁm il Vﬂ( /
[ [y | : \ I | N
R | AEER w il

20 o 20 20 o 20 20 o 20 h 0 »

Kana ¥y xard ¥ ) Xara¥ ) Letcn Pevioc
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Warp PIC Simulation (see S9) Results — Semi-Gaussian (for contrast)

0o =70°, L,=05m, e, =¢,=>50mm-mrad

ofog =0.2
| 1 o | e
b Pa I ey ?w Il \L ‘\Nﬁﬂ“
M f \' it ,
; L . ‘\\ X./\J/
/oy =0.7
. = | .. s o i
| i LA
] A TR A e
i A (M
U 0 NUUU R URD U6 OU  OUJ VOUO i . L OO
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S6F: Injection of Distribution off a Source

To be added in future versions.
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S7: Numerical Convergence
S7A: Overview

Numerical simulations must be checked for proper resolution and statistics to be
confident that answers obtained are correct and physical:
Resolution of discretized quantities
+ Time t or axial s step of advance
+ Spatial grid of fieldsolve
+ For direct Vlasov: the phase-space grid

Statistics for PIC
+ Number of macroparticles used to represent Vlasov flow to control noise

Increased resolution and statistics generally require more computer resources
(time and memory) to carry out the required simulation. It is usually desirable to
carry out simulations with the minimum resources required to achieve correct,
converged results that are being analyzed. Unfortunately, there are no set rules on
adequate resolution and statistics. What is required generally depends on:

+ What quantity is of interest

+ How long an advance is required

+ What numerical methods are being employed .....
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General Guidance on Numerical Convergence Issues
Although it is not possible to give detailed rules on numerical convergence issues,
useful general guidance can be given:

+ Find results from similar problems using similar methods when possible

+ Analyze quantities that are easy to interpret and provide good measures of
convergence for the use of the simulation

- Some moments like rms emittances: F=a—(x)
~ - - .n211/2
e=d (@ @ v sa

can provide relatively sensitive and easy to interpret measures of
relative phase-space variations induced by numerical effects when
plotted as overlaid time (or s) evolution “histories”
+ Benchmark code against problems with known analytical solutions and
properties
- Apply a variety of numerical methods to judge which applies best
+ Benchmark code against established, well verified simulation tools
- Use different numerical methods expected to be more or less accurate
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+ Recheck convergence whenever runs differ significantly or when different
quantities are analyzed
- What is adequate for one problem/measure may not be for another
- Ex: rms envelope evolution easier to converge than collective modes
+ Although it is common to increase resolution and statistics till quantities do
not vary, it is also useful to purposefully analyze poor convergence so
characteristics of unphysical errors can be recognized
- Learn characteristic signature of failures to resolve effects so
subtle onset issues can be recognized more easily
+ Expect to make many setup, debugging, and convergence test runs for each
useful series of simulations carried out
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S7A: Resolution: Advance Step

Discussion is applicable to advancing particles in the axial machine coordinate (s)
or time (f). We will present the discussion in terms of the timestep A;
Courant Conditions
+ Particles should not move more than one grid cell in a single timestep
UjAt < A] 2D Xy: j= X,y
2D rz: j=rz
3D xyz: j=xy,z

Essence of condition is that data should have time to propagate to the spatial
range of relevance on which the numerical method is formulated.

+ Waves should not propagate more than one grid cell in a single timestep

UgAt < A]

vg = |wave group velocity]|

Condition will be particularly demanding for fast electromagnetic waves with
Vg~ C
9
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Resolution of Applied Field Structures
+ Enough steps should be taken to adequately resolve applied field structures

VA < A A = shortest wavelength

of variation of applied field

SM Lund, USPAS, June 2011 Simulation Techniques 153

Variation of collective oscillations (waves)
+ For a leap-frog mover this requires minimally

T = period of wave component

Ay < 1
T 2

Collective modes can have high harmonic components which evolve rapidly

rending resolution issues difficult. See lectures on Transverse Kinetic Stability
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S7C: Resolution: Spatial Grid

The spatial grid should resolve both space-charge variations of the beam
associated with both the bulk structure of the beam and collective waves

Beam Edge
+ Estimate from equilibrium beam properties (see lectures on Transverse
Equilibrium Distributions) as being on the scale of the characteristic thermal
Debye length
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S7D: Statistics

Collective effects require having a significant number of particles within the
“volume” bounded by the characteristic shielding distance
+ Shielding distance given by the Debye length:

)\D = 2 = <60kBT)1/2

5
Wp g*n

v; = thermal velocity

wp = plasma frequency

T = kinetic temperature
n = characteristic density

+ “Volume” bounded by shielding distance will depend on the dimension of the
simulation being carried out. For simulations with N macro-particles:
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S7E: Illustrative Examples with the Warp Code
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S8: Practical Considerations:
A: Overview

Intense beam simulation problems can be highly demanding on computer
resources — particularly for realistic higher dimensional models. The problem
size that can be simulated is dictated by computer resources available in fast
memory and the run time required to complete the simulation

+ Fast Memory (RAM)

+ Wall Clock Run Time (Computer Speed)
Both of these can depend strongly on the architecture of computer system that the
problem is run on:

+ Serial Machine

+ Parallel Machine
can strongly influence the size of the problem that can be simulated. We will
present rough estimates of the computer memory required for simulations and
provide some guidance on how the total simulation time can scale on various
computer systems. The discussion is limited to PIC and direct Vlasov
simulations.
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S8B: Practical Considerations: Fast Memory

Fast computer memory (RAM) dictates how large a problem can be simulated
+ If a problem will not fit into fast memory (RAM), computer performance will
be severely compromised
+ Writes to hard disks are slow
There are 3 main contributions to the problem size for typical PIC or direct
Vlasov simulations:
1) Particle Phase Space Coordinates (PIC)
or Discretized Distribution Function (Direct Vlasov)
2) Gridded Field
3) General Code Overhead
These three contributions to memory required are discussed in turn

Particle and field quantities are typically stored in double precision:

Representation | Digits (Floating Point) |Bytes Memory

Single Precision 8 4
Most Double Precision | 16 8
problems
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Estimates of Required Fast Memory

1) Particle Phase Space Coordinates (PIC):

B = bytes of floating point number (typically 8 for double precision)
Np = number macro particles (0 for direct Vlasov)

D = dimension of variables characterizing particles

Memory =B * Np *D Bytes

The dimension D depends on the specific type of PIC simulation and methods
employed
/I Common Examples of D:

3DPIC: D=7 2D Transverse Slice PIC: D =35

Z, Y, = xr, Yy

Dz, Py, Pz, '7_1 Dz, py,7_1 + P, (D=6)some models
-1

~~ " is often included often to optimize the mover /)
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Estimates of Required Fast Memory

1) Discretized Distribution Function (Direct Vlasov):

B = bytes of floating point number (typically 8 for double precision)
Npm = number mesh points of grid describing the discretized

particle phase space

Memory =B * Npm Bytes

The value of Npm depends critically on the dimensionality of the phase space
/I Examples of Npm scaling for a uniform phase-space meshes:

Problem Phase Space Npm Scaling
(ng =nyp, =n etc)
1D ” Z =Pz NzNp, n2
2D L Slice | * — pg, ¥y — Py Ny Np, Mp, n'
2D Slice T —Pxy Y — Py, Pz NgNyNp, Tp, Top.. n’
3D T =Py Y— Dy 2 — Dz | NaNynany, np, ny. | n°

n, = number mesh points in x etc.

Rapid growth of N with dimensionality severely limits mesh size

m
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Memory required for a double precision (B = 8) uniform phase-space grid with
100 zone discretization per degree of freedom:

ng = np, =n =100 etc.

D = dimension of phase-space

Memory = 8 * n” Bytes

Problem D | Memory (Bytes)
(n = 100)
D 2 | 80 x 10° ~ 80 KB
2D L Slice | 4 | 800 x 10° ~ 800 MB
2D Slice 5 | 80 x 10° ~ 80 GB
3D 6 | 8x10' ~ 8000 GB =8 TB /

Rapidly increasing problem size with phase-space dimension D practically limits
what can be simulated on direct Vlasov simulations with reasonable resolution
even on large parallel computers:
+ Irregular phase-space grids that place resolution where it is needed can
partially alleviate scaling problem: provides more help in higher dimensions
+ Improved methods also seek to only grid minimal space exterior to the
oscillating beam core in alternating gradient lattices
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2) Gridded Field:
Required memory for a gridded field solve depends on the class of field solve
(electrostatic, electromagnetic), mesh size, and numerical method employed.
For a concrete illustration, consider electrostatic problems using a simple FFT
field solve:
+ Discrete Fourier Transform complex, but transform is of real functions.
Optimization allows use of transforms using only real ¢ and O arrays
+ Electric field is typically not stored and is calculated for each particle only
where it is needed. Spatial grid location need not be stored.
- Some methods store gridded E to optimize specific problems

N = number mesh points of field spatial grid

Memory = 2 * B* me Bytes

Factor of 2 for: p, ¢
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Number of mesh points N i depends strongly on the dimensionality of the field

solve and the structure of the mesh
+ Generally more critical to optimize storage and efficiency (see next section)
of fieldsolvers in higher dimensions

Examples for uniform meshes:

Nipm =n, 1D (Longitudinal)
= NgNy 2D (Transverse Slice)
=nsn, 2D (r-z Axisymmetric)

=nznyn, 3D

n, = number mesh points in x etc.
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3) General Code Overhead:
System memory is also used for:
+ Scratch arrays for various numerical methods (fieldsolvers, movers, etc.)
+ History accumulations of diagnostic moments
+ Diagnostic routines
+ Graphics packages, external libraries, etc.
- Graphics packages can be large!

Memory = M

overhead

Bytes

Characteristic of packages used, size of code, and methods employed. But typical
numbers can range 1 MB — 20 MBytes

Summary: Total Memory Required:
For illustrative example, add memory contributions for electrostatic PIC

PIC: Total Memory = B * ( NP *D + 2% me) +M . Bytes

Direct Valsov: Total Memory =2 * B * ( Npm + N fm) + M Bytes

overhead

Reminder: Machine fast memory (RAM) capacity should not be exceeded

+ Storing data on disk and cycling to RAM generally too slow!
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S8C: Practical Considerations: Run Time

Run time can depend on many factors including:

+ Type of problem

+ Dimensionality of problem and number of particles and/or mesh points

+ Numerical methods employed (particle moving, fieldsolve, ....)

+ Moments and diagnostics accumulated

+ Architecture/speed of computer system
It is not possible to give fully general guidance on estimating run times.
However, to better characterize the time required, it can be useful to benchmark
the code on the computer to be employed in terms of:

t =Time for an “ordinary” run step
step

Generally, parts of the code that more time is spent in should be more carefully
optimized to minimize total run time. Particular care should be taken with:

+ Particle mover

+ Field solver

+ Frequent computationally intense diagnostics such as moments
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Diagnostics, loaders, problem setup routines, etc. can often be coded with less
care for optimization since they are only executed infrequently. However:
+ Diagnostics often take a large amount of development time
- Often better to code as simply as possible to avoid problems!

Software profiling tools can be useful to best understand where “bottlenecks”
occur so effort on optimization can be appropriately directed for significant
returns.
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Dimensionality plays a strong role in required run time

Some general guidance for electrostatic PIC Simulations:

1D: (Longitudinal typical)
Fieldsolve generally fast: small fraction of time compared to moving particles
+ Green's function methods can be used (Gauss Law)

2D: (Transverse xy slice and axisymmetric r-z typical)
Fieldsolve typically a small fraction of time relative to moving particles if fast
gridded methods are applied (like FFT based methods)

+ Special boundary conditions can increase the fraction

Method Numerical Work

FFT with Periodic BC Small fraction of particle moving
FFT with Capacity Matrix

Multigrid

Green's Function Dominates particle moving
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3D:
Fieldsolve typically comparable in time or dominates time for particle moving
even if fast, gridded methods are applied
+ Fieldsolve efficiency of critical importance in 3D to optimize run time
+ Whole classes can be taught just on methods of 3D electrostatic field solves
for the Poisson equation V?¢ = —p/¢q discretized on a mesh

Some general guidance for Direct Vlasov Simulations:

The rapid growth of the problem size with the phase space-dimension and
available fast computer memory can severely limit problem sizes that can be
simulated:
+ Numerical work can be significant to advance the discretized distribution over
characteristics
+ Size of gridded field arrays can be very large leading to slow advances
- Nonuniform mesh can help control size at the expense of code complexity
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The type of computer system employed can also strongly influence run time
+ Processor Speed
+Memory Speed
-RAM
- Fast, optimized cache memory
+ System Architecture (see next section)
- Serial
- Parallel
+ Library Optimization
- Especially relevant for parallel machines
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S8D: Practical Considerations: Machine Architectures

Problems may be simulated on:
1) Serial Machines
+ Single processor or an independently run processor on a multi-processor
machine (example: most present multi-"core” processors)
2) Parallel Machine
+ Multi-processors coordinated to work as a large single processor
+ Usually employ independent memory for each processor making up the
machine but sometimes uses shared memory among processors
Serial machines represent traditional computers (PCs, workstations, etc), whereas
parallel machines are generally less familiar.

Overview of parallel simulations:

In recent years parallel machines have significantly improved with libraries that
allow more “natural” problem formulation with less effort. This is enabling
significantly larger simulations to be carried out
+ Several 100 million particles typically practical to simulate on large machines
with fast, gridded fieldsolve
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Typical Parallel Machine Architecture

Beam problems may often be conveniently partitioned among processors in terms
of axial slices. Schematic example (5 processors):

 partition

fast
links

communications
processor L \Jv

+ Sharing of data at boundaries is necessary for fieldsolve in electrostatic case
+Problems with axial velocity spread generally requires sorting of particles to
maintain the load balance between processors
- Processors should ideally all perform an equal amount of work since the
slowest will dictate the total time of the advance step
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Ideal parallelization results in a linear speedup with processor number
+ Actual speedup typically less due to:
- Overhead in data transfers
- Lack of ideal load balance causing processors to wait on the slowest
one that the problem is partitioned among

Tstep = Lime ”ordinary” step in compuational cycle
Simulation Time

sim =

Tstep
Ideal . ///
/ Actual
= e
2 0f e
El S
E e
= e
£ oor e
= yd
1r /
| | | |
1 10 20 30
Number Processors
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Even with the significant advances in problem size and speed promised by
parallel computers, the solution of realistic 3D beam problems with direct (not
gridded) fields remains far too large a problem to simulate with present computer
systems. Also, the continuum limit Vlasov solution to problems is in itself of
intrinsic interest as a well posed model of many physical systems. Thus, for
detailed simulations, we often push computer resources to the maximum extent
possible.

+ Better numerical algorithms

+ Parallelization

*
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S9: Warp Code Overview

See the Warp web site: http://warp.lbl.gov
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S10: Example Simulations

Examples to this point have mostly been simply formulated to illustrate concepts.
Here, we present results from more complex simulations carried out in support of
experiments, theory, and for machine design. Simulations highlighted include:

+ Electrostatic Quadrupole Injector

+ Multi-beamlet Injector

+ Collective Mode Effects

+ Detailed Transport Lattice Design

+ Transport Limits in Periodic Quadrupole Focusing Channels

+ Electron Cloud Effects for Ion Beam Transport
All these simulations, as well as many of the preceding illustrations in the lecture
notes, were produced with the Warp code described in S9. Only select issues
from the problems are highlighted.
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Example: Electrostatic Quadrupole Injector

See handwritten notes from USPAS 06 for remaining slides
+ Will be updated in future versions of the notes
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund

Lawrence Berkeley National Laboratory
BLDG 47 R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

SMLund@1bl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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